
MT Professional Skills for Mathematical Scientists

The Order Problem for Natural and
Tropical Matrix Semigroups in GAP

Author:
Stuart Burrell

Supervisor:
Dr James Mitchell

School of Mathematics and Statistics

May, 

Abstract

We survey the literature required to address the order problem for natural and tropical matrix
semigroups. In addition, we implement a variety of methods in GAP, culminating in an
effective decision algorithm for the order problem of natural and tropical matrix semigroups.
The intended readership is the graduate student in pure mathematics who is unfamiliar with
this area. Thus, although we may recap crucial definitions for clarity, a strong mathematical
knowledge base is expected.

Contents

0 Introduction 2

1 The Order Problem for Natural Matrix Semigroups 5

2 Tropical Matrices 13
2.1 Basic definitions . 13
2.2 Inversion . 15
2.3 The precedence digraph . 18
2.4 Irreducible blocks . 19

3 Computing the Simple Circuits of a Directed Graph 21
3.1 Johnson's algorithm . 21

4 Spectral Theory for Tropical Matrices 28
4.1 The spectral radius . 28
4.2 Radial eigenvectors . 32
4.3 Normalisation . 35

5 The Order Problem for Tropical Matrix Semigroups 40
5.1 The torsion problem . 41
5.2 The order problem . 55

6 Summary and Testing 56

Bibliography 61

1

Chapter 0

Introduction

Numerous methods in the GAP semigroups package [1] [2] benefit from an efficient and ter-

minating procedure for detecting semigroups of infinite cardinality. In addition, this may aid

research when experimenting with novel and unknown semigroups. Determining the exis-

tence of an algorithm that decides the cardinality of an object is known as the order problem.

To begin, we focus on semigroups of matrices over N = {0, 1, 2, ...}, which we refer to as

natural, or positive integer, matrices. A positive solution to the order problem for natural

matrix semigroups is given in [3]. The objective of chapter 1 is to present an implementation

of a decision algorithm for the order problem of natural matrix semigroups in GAP. Preceding

this, we give a survey of the theoretical results from [3] that justify our approach.

The second objective of our work is to consider the order problem for semigroups of trop-

ical matrices. There is an ambiguity in current literature concerning their definition. We use

the max-plus convention and adopt the terminology max-plus matrices. That is, we consider

matrices over the max-plus semiring. Denoted Rmax, this is the semiring consisting of the set

R∪{−∞} with the operations defined by a⊕b = max{a, b} and a⊗b = a+b. A solution

to the order problem for finitely generated semigroups of max-plus matrices is given in [4],

though the required theory is more involved. The approach draws on spectral theory, which

is the analogy of Perron-Frobenius theory in this context, and a graphical interpretation of

2

max-plus matrices.

In chapter 2, we present and justify implementations of several required methods for max-

plus matrices. These include an inversion algorithm from [5], an elementary procedure for

constructing a directed graph from a max-plus matrix, and, finally, a related method concern-

ing matrix irreducibility. Subsequently, chapter 3 deals with finding the circuits of a graph

that do not contain subcircuits, known as simple circuits. We discuss and present an imple-

mentation of Johnson's algorithm [6] in GAP. Though seemingly tangential, several of our

later algorithms depend upon it.

Chapter 4 first focuses on computing the largest eigenvalue of a max-plus matrix, known

as the spectral radius. Thematically, we use a graphical approach based on a classical result

discussed in [4] and [7], amongst others. This is fundamental. In most cases a simple com-

putation based on the spectral radius can allow rapid detection of infinite cardinality. Next,

we consider the eigenvector corresponding to the spectral radius, and a process of semigroup

normalisation crucial to the solution to the order problem in [4].

We proceed to the climax of our work in Chapter 5. Drawing on the methods developed

throughout, we present an implementation in GAP to decide the order problem for max-

plus matrix semigroups. In order to elaborate on our approach, recall that an element a of

a semigroup S is torsion if and only if there exists m,n ∈ N such that m > n ≥ 1 and

am = an. We then say a semigroup is torsion if each of its elements is torsion. In addition,

the famous Burnside problem asks whether a finitely generated torsion semigroup is finite.

Gaubert gives a positive solution to the Burnside problem for max-plus matrix semigroups in

[4]. This reduces the order problem to the analogously defined torsion problem for max-plus

matrix semigroups. Consequently, our implementation to decide the order problem is based

on a decider for the torsion problem from [4]. Finally, in chapter 6, we summarise our work

3

and verify the effectiveness of our implementation with a series of tests.

4

Chapter 1

The Order Problem for Natural Matrix

Semigroups

The purpose of this section is to present an implementation in GAP that decides the order

problem for finitely generated natural matrix semigroups. Prior to this, we present the theo-

retical justification of this implementation from [3], where the algorithm was first introduced.

First, for a semiringR, letMn(R) denote the set of n×nmatrices overR. Then, let S =

⟨M1,M2, ...,Mk⟩ denote the semigroup generated by {M1, ...,Mk}, where Mi ∈ Mn(N)

for i = 1, ..., k. We wish to determine in finite time if |S| < ∞.

Next, consider the semiring N2 = {0, 1, 2} ⊆ N with the operations a ⊕ b = min{a +

b, 2} and a ⊗ b = min{ab, 2}. The following method is based on mapping elements from

Mn(N) into the finite set Mn(N2). In particular, we define Ψ : Mn(N) → Mn(N2) by

(AΨ)ij = min{Aij, 2}. (1.1)

In order to prove the first key theorem, we require the following two lemmas from [3],

recalling the definition of a torsion element from chapter 0.

5

Lemma 1.0.1. Let A and B be matrices in Mn(N), such that AΨ = BΨ. Then A is torsion if

and only if B is torsion.

Proof. First, assume that A is torsion. We wish to show that B is torsion. Let C be a matrix

such that AΨ = CΨ and Cij = Aij for all but a single pair (i, j) = (a, b). It is sufficient

to show that C is torsion, since our argument can be iterated by the transitivity to obtain the

result for B. Recall AΨ = BΨ by assumption, hence (CΨ)ab = (AΨ)ab. Thus, from the

definition of Ψ and since Cab ̸= Aab, it follows that Cab, Aab ≥ 2.

To proceed, let N(x) denotes the set of polynomials with natural number coefficients.

We consider an indeterminate variable x, and construct a matrix A′ ∈ Mn(N(x)) such that

A′
ij = Aij for (i, j) ̸= (a, b) and A′

ab = x. For a fixed value x0, we write A′(x0) to be the

evaluation of A′ at x0. Next, consider the family of polynomials given by

P = {(A′)mij |m ∈ N, i, j = 1, ..., n}. (1.2)

Suppose that P has infinite cardinality. Then, since each element (A′)mij of P is a polynomial

of x with natural number coefficients, the set {(A′)mij (Aab) |m ∈ N, i, j = 1, ..., n} is

unbounded since Aab ≥ 2 > 0. This is a contradiction, since A is torsion if and only if there

exists a k ≥ 0 such that Am
ij ≤ k for all i, j and m. Hence P is finite and so A′ is torsion,

since only finitely many polynomial expressions occur as valid entries on taking powers. In

particular, it follows that C = A′(Cab) is torsion, as required.

For the next lemma, recall that a ∈ S is idempotent if and only if a2 = a.

Lemma 1.0.2. Let P be a torsion semigroup and let γ : S → P be a morphism, such that for all

a ∈ S, if aγ is idempotent then a is torsion. Then S is torsion.

Proof. Suppose a ∈ S. By assumption P is torsion, and so aγ is torsion. By definition, the

there exist n,m such that (aγ)n = (aγ)m. Hence, (aγ)k = (aγ)k+(m−n) for k ≥ n by

6

periodicity. Let k be such that k = q(m− n) for some q ∈ N. It follows that

((aγ)k)2 = (aγ)2k = (aγ)k+k = (aγ)k+q(m−n) = (aγ)k, (1.3)

and so (aγ)k is idempotent. By the hypothesis, it then follows that ak is torsion. Hence there

existm,n such that (ak)m = (ak)n. It then immediately follows that akm = akn and so a is

torsion. Since a was arbitrary, S is torsion.

To proceed, we require the following result by McNaughton and Zalcstein. Recall that a

semigroup is locally finite if every finitely generated subsemigroup is finite.

Theorem 1.0.3. For a field F and n ∈ N, every torsion semigroup S ⊆ Mn(F) is locally finite.

We can now prove the following theorem, which is central to the decision algorithm. First,

let ι : M(N2) → M(N) denote the set inclusion map.

Theorem 1.0.4. A finitely generated subsemigroup S ⊆ Mn(N) is finite if and only if for all

A ∈ SΨ, if A is idempotent then Aι is torsion.

Proof. First, we assume that S is finite and thus torsion. Let A ∈ SΨ be idempotent. We

wish to show that Aι is torsion. Suppose B ∈ S is such that BΨ = A. Since A ∈ SΨ,

clearly A = Aι = AιΨ. Hence BΨ = AιΨ. By lemma 1.0.1, this implies B is torson if and

only if Aι is torsion. B ∈ S is torsion since S is torsion by assumption. Hence Aι is torsion,

as required.

Next, assume that for allA ∈ SΨ, ifA is idempotent thenAι is torsion. We wish to show

that S is finite. Let A ∈ S be such that AΨ is idempotent. By hypothesis AΨι is torsion.

Thus, A is torsion by lemma 1.0.1, since AΨ = (AΨι)Ψ. The conditions of lemma 1.0.2 are

met, and thus S is torsion. The result now follows from 1.0.3, since S is finitely generated

and we can consider the elements of S as a subset of Mn(Q), noting that Q is a field.

7

Theorem 1.0.4 reduces the order problem to the torsion problem for matrices A ∈ S

such that AΨ is idempotent. The following two lemmas exploit this reduction, and form

an easily verifiable criteria to decide the torsion problem for such matrices. These rely on

the notion of a precedence digraph for a matrix A ∈ Mn(N), denoted P(A). In particular,

P(A) = (V,E × E,L) for vertex set V = {1, ..., n} and edge set E ⊆ V × V , where

(i, j) ∈ E if and only if Aij ̸= 0. Furthermore, L = {Aij : (i, j) ∈ E ×E} represents a set

of edge labels, or weights. We require the following technical lemma from [3]. For brevity,

we omit the proof, but note that it follows from the key fact that for all k ∈ N, Ak
ij is the sum

of the labels of the length k directed paths from vertex i to j in P(A).

Lemma 1.0.5. Let A ∈ Mn(N). Then the following statements are equivalent

(a) A is torsion

(b) P(A) contains neither a directed circuit with label at least 2, nor two distinct circuits joined

by a path.

(c) There exists a permutation matrix P such that P−1AP has the block form


B11 B12 B13

0 B22 B23

0 0 B33

 , (1.4)

where B11 and B33 are upper-triangular matrices and B22 is a permutation matrix.

Lemma 1.0.5 allows us to prove the following corollary, which establishes an important

result concerning idempotent elements in the image of S under Ψ.

Corollary 1.0.6. Suppose A ∈ Mn(N) is torsion. If AΨ is idempotent, then A2 = A3.

Proof. Since A is torsion, by lemma 1.0.5 there exists a permutation matrix P such that

8

P−1AP has the form 
B11 B12 B13

0 B22 B23

0 0 B33

 . (1.5)

By cancellation, (P−1AP)2 = P−1A2P . Thus, sinceAΨ is idempotent andΨ is a morphism

we have that
(P−1AP)2Ψ = (P−1A2P)Ψ

= (P−1Ψ)(A2Ψ)(PΨ)

= (P−1Ψ)((AΨ)2)(PΨ)

= (P−1Ψ)((AΨ))(PΨ)

= (P−1AP)Ψ.

(1.6)

Next, by direct computation, observe that

(P−1AP)2 =


(B11)

2 (B11B12 +B22B12) ...

0 (B22)
2 (B22B23 +B23B33)

0 0 (B33)
2

 . (1.7)

Thus, since (P−1AP)2Ψ = (P−1AP)Ψ, we deduce that ((P−1AP)2)12 and ((P−1AP)2)23

imply B11 and B33 are null, since B22 is a permutation matrix (and hence not null). Thus,

there exists a permutation matrix T such that

(T−1AT) =


0 C D

0 I E

0 0 0

 , (1.8)

by choosing T to permute the rows such that permutation matrix B22 becomes the identity,

9

I . Then, a direct computation yields

(T−1AT)2 =


0 C D

0 I E

0 0 0



0 C D

0 I E

0 0 0

 =


0 C EC

0 I E

0 0 0

 (1.9)

and

(T−1AT)3 =


0 C EC

0 I E

0 0 0



0 C D

0 I E

0 0 0

 =


0 C EC

0 I E

0 0 0


= (T−1AT)2.

(1.10)

It then immediately follows that T−1A2T = T−1A3T . By cancellation, we deduceA2 = A3,

as required.

Observe that corollary 1.0.6 implies that, for A ∈ Mn(N), if AΨ is idempotent and

A2 ̸= A3, then A is not torsion. From this, we have the next theorem which immediately

suggests a clear algorithmic process for our implementation.

Theorem 1.0.7. Let S be a finitely generated subsemigroup of Mn(N). Then S is finite if and

only if for all A ∈ SΨ, if A is idempotent then (Aι)2 = (Aι)3.

Proof. Assume that S is finite, and suppose A ∈ SΨ is idempotent. We wish to show that

(Aι)2 = A(ι)3. Since AιΨ = A, by corollary 1.0.6 it suffices to show that Aι is torsion.

This follows immediately from theorem 1.0.4, as required.

Conversely, assume that for all A ∈ SΨ, if A is idempotent then (Aι)2 = (Aι)3. We

wish to show that S is finite. Aι is torsion, since (Aι)2 = (Aι)3. Hence by theorem 1.0.6 S

is finite, as required.

Theorem 1.0.7 enables us to decide the order problem for finitely generated natural ma-

trix semigroups is as follows. First, compute the finite semigroup SΨ. Then, verify that each

10

idempotent element A ∈ SΨ satisfies (Aι)2 = (Aι)3. To conclude this section, we present

an implementation of this algorithm for inclusion in the GAP semigroups package.

1 InstallMethod(IsFinite,

2 "for a semigroup of matrices of positive integers",

3 [IsIntegerMatrixSemigroup],

4 function(S)

5 local gens, ET, mat, row, val;

6 gens := GeneratorsOfSemigroup(S);

7 for mat in gens do

8 for row in mat do

9 for val in row do

10 if val < 0 then

11 TryNextMethod();

12 fi;

13 od;

14 od;

15 od;

16 ET := Idempotents(Semigroup(List(gens, x −> AsMatrix(IsNTPMatrix, x

, 1, 2))));

17 for mat in ET do

18 mat := AsMatrix(IsIntegerMatrix, mat);

19 if mat ^ 2 <> mat ^ 3 then

20 return false;

21 fi;

22 od;

23 return true;

11

24 end);

12

Chapter 2

Tropical Matrices

We begin with an introduction to max-plus matrices and their arithmetic. Next, we draw on

[5] to prove and present an effective inversion algorithm. This is utilised in chapter 5. Moving

on, we give a GAP method for generating the precedence digraph for max-plus matrices.

Finally, we present a method for extracting the blocks, or partitions, of max-plus matrices

that correspond to the strongly connected components of the precedence digraph.

2.1 Basic definitions

We denote the set of n × n max-plus matrices by Rn×n
max . Arithmetic in Rn×n

max is naturally

defined. For A,B ∈ Rn×n
max , we define the sum A⊕B by

[A⊕B]ij = max{Aij, Bij}. (2.1)

Furthermore, we define the product A⊗B by

[A⊗B]ij =
⊕

k∈{1,...,n}

Aik ⊗Bkj = max
k∈{1,...,n}

{Aik +Bkj} (2.2)

13

In addition, for a scalar γ ∈ Rmax we define

(γA)ij = (γ ⊗ A)ij = γ ⊗ Aij = γ + Aij, (2.3)

for all i, j = 1, ..., n. Next, note that the additive (⊕) and multiplicative (⊗) identities of

Rmax are−∞ and 0, sometimes denoted 0 and 1, respectively. Correspondingly, the identity

matrix I ∈ Rn×n
max is defined by

Iij =


1 = 0 i = j

0 = −∞ i ̸= j

. (2.4)

Relatedly, we say thatD ∈ Rn×n
max is diagonal ifDij = −∞ for i ̸= j. Furthermore, we define

Z ∈ Rn×n
max such that Zij = −∞ = 0 for all i, j to be the zero max-plus matrix. To conclude

this section, we present a simple example to clarify arithmetic in Rn×n
max .

Example 2.1.1.

Let A,B ∈ Rn×n
max be such that A =

 −∞ 2

−4 0

 and B =

 0 1

−3 4

. Then

A⊕B =

max{−∞, 0} max{2, 1}

max{−4,−3} max{0, 4}

 =

 0 2

−3 4

 , (2.5)

and

A⊗B =

max{(−∞+ 0), (2 + (−3))} max{(−∞+ 1), (2 + 4)}

max{(−4 + 0), (0 + (−3))} max{(−4 + 1), (0 + 4)}


=

−1 6

−3 4

 .

(2.6)

14

2.2 Inversion

Our later work requires a process of inversion for diagonal max-plus matrices. As you shall

see, this case is simple. However, we include a general method from [5] to clarify inversion for

the diagonal case, and to provide a function of general utility for the GAP semigroups package.

First, forλ = (λ1...., λn), we denote byD(λ) then×n diagonal matrix withDii = λi for

i ∈ {1, ..., n}. In addition, we sayP is amax-plus permutationmatrix if each row and column

in P contains exactly one entry equal to 0 and all other entries equal to−∞. Equivalently, we

denote by Pσ the max-plus permutation matrix obtained through a permutation σ of the rows

of the identity I . We are now ready to present a result and proof from [5], which characterises

the invertible max-plus matrices and indicates the inversion process.

Theorem 2.2.1. Let A ∈ Rn×n
max . Then A has an inverse if and only if A = Pσ ⊗ D(λ).

Moreover, the inverse of A is equal to Pσ−1 ⊗D(−λ).

Proof. To begin, we establish the result for right inverses. Suppose there exists a B ∈ Rn×n
max

such that A⊗B = I . By definition, this implies

max
k

{Aik +Bkj} =


0 i = j

−∞ i ̸= j

. (2.7)

Thus, for each i there exists a k such that Aik + Bki = 0. It immediately follows that there

exists a function θ(i) such that Aiθ(i) +Bθ(i)i = 0. Next, observe that for i ̸= j we have

Aiθ(j) +Bθ(j)j = −∞, (2.8)

by 2.7. However, since Ajθ(j) + Bθ(j)j = 0, this implies that Aiθ(j) = −∞ for i ̸= j. It

follows that θ is injective, since if θ(i) = θ(j) for i ̸= j, thenAiθ(i) = Aiθ(j) =⇒ 0 = −∞,

a contradiction. Hence θ is a permutation on {1, ..., n} and each row of A contains a singe

15

entry not equal to −∞. In addition, since Aiθ(i) > Aiθ(j) for i ̸= j, the unique entry in the

θ(i)th column not equal to −∞ is Aiθ(i).

Next, consider the matrix A′ = Pθ ⊗ A. The permutation matrix Pθ permutes the rows

of A such that the ith row of A becomes the θ(i)th row of A′. Thus, A′ is a diagonal matrix,

since θ is a permutation and the ith row of A has a single entry not equal to−∞ in the θ(i)th

column. It then follows that

Pθ ⊗ A = A′ = D(λ), (2.9)

for some λ ∈ Rn
max. On setting σ = θ−1, we have

Pθ ⊗ A = D(λ) =⇒ A = Pσ ⊗D(λ), (2.10)

since Pσ ⊗ Pθ = I . For the converse, direct calculation imples A−1 = Pσ−1 ⊗D(−λ).

Finally, we show that a right inverse is also a left inverse. Suppose B is a right inverse of

A, then A is of the form A = Pσ ⊗D(λ). Observe B′ = D(−λ)⊗ Pσ−1 is a left inverse of

A. But we have that

B′ = B′ ⊗ I = B′ ⊗ (A⊗B) = (B′ ⊗ A)⊗B = B, (2.11)

as required.

To conclude, we present an implementation of an inversion algorithm in GAP, derived

from theorem 2.2.1.

1 InstallMethod(InverseOp, "for a max−plus matrix",

2 [IsMaxPlusMatrix],

3 function(mat)

16

4 local dim, seen_rows, seen_cols, out, row, col;

5

6 dim := DimensionOfMatrixOverSemiring(mat);

7 seen_rows := BlistList([1 .. dim], []);

8 seen_cols := BlistList([1 .. dim], []);

9 out := List([1 .. dim], x −> List([1 .. dim], y −> −infinity));

10

11 for row in [1 .. dim] do

12 for col in [1 .. dim] do

13 if mat[row][col] <> −infinity then

14 if seen_rows[row] or seen_cols[col] then

15 return fail;

16 fi;

17 seen_rows[row] := true;

18 seen_cols[col] := true;

19 out[col][row] := −mat[row][col];

20 fi;

21 od;

22 od;

23

24 return Matrix(IsMaxPlusMatrix, out);

25 end);

17

2.3 The precedence digraph

A variety of our methods, particularly the calculation of the Spectral Radius in chapter 4,

require the notion of a precedence digraph that we introduced in chapter 1. In this short

section we give a definition of P(A) in the max-plus context and present a GAP method for

computing the precedence digraph of a max-plus matrix.

For A ∈ Rn×n
max , we define P(A) = (V,E, L) for vertex set V = {1, ..., n} and edge

set E ⊆ V × V , where (i, j) ∈ E × E if and only if Aij ̸= −∞. As before, L = {Aij :

(i, j) ∈ E×E} represents a set of edge labels, or weights. Observe there exists a single minor

adaptation from the previous definition. In particular, E × E is defined according to the

max-plus additive identity −∞, as opposed 0 as in the natural matrix case.

The following method returns a precedence digraph of a max-plus matrix with the excep-

tion that L = ∅ is fixed. It is typically computationally unnecessary to attach the weights to

the digraph object, since they can be readily accessed from the input matrix. We make use of

the GAP Digraphs package [8].

1 InstallMethod(UnweightedPrecedenceDigraph,

2 "for a max−plus matrix",

3 [IsMaxPlusMatrix],

4 function(mat)

5 local adj;

6

7 # Auxiliary function used to compute the adjacency matrix

8 adj := function(i, j)

9 if mat[i][j] = −infinity then

10 return false;

18

11 else

12 return true;

13 fi;

14 end;

15

16 # Generate and return digraph object

17 return Digraph([1 .. DimensionOfMatrixOverSemiring(mat)], adj);

18 end);

2.4 Irreducible blocks

The idea of matrix irreducibility is central to the positive solution of the torsion problem for

max-plus matrix semigroups in [4]. We say that a matrix A ∈ Rn×n
max is irreducible if and only

if

∀i, j : i ̸= j : ∃k ∈ N : (Ak)ij ̸= −∞. (2.12)

Moreover, recall that (Ak)ij is equal to the sum of the labels of the length k paths from vertex

i to j in P(A) (noting that sum refers to ⊕ in this context). Thus, the above admits a trans-

lation: A ∈ Rn×n
max is irreducible if and only if P(A) is strongly connected. This motivates the

definition of an irreducible block. First, we say a strongly connected component Vc is max-

imal if there does not exist a vertex v /∈ Vc such that Vc ∪ {v} is strongly connected. Then,

for each maximal strongly connected component with vertex set Vc , an irreducible block of

A is formed by deleting the rows and columns from A corresponding to vertices V \Vc. This

definition is essential for deciding the torsion problem, since a case arises that requires the ver-

ification of a property for each irreducible block of a matrix. Thus, we present a GAP method

that returns a list of the irreducible blocks for a given max-plus matrix.

19

1 InstallMethod(IrreducibleBlocks,

2 "for a max−plus matrix",

3 [IsMaxPlusMatrix],

4 function(mat)

5 local prec, scc;

6

7 # Compute strongly connected components of precedence graph of M

8 prec := UnweightedPrecedenceDigraph(mat);

9 scc := DigraphStronglyConnectedComponents(prec).comps;

10

11 # Reverse engineer maximal irreducible block matrices

12 return List(scc, c −> Matrix(IsMaxPlusMatrix,

13 List([1..Length(c)],

14 x −> List([1..Length(c)],

15 y −> mat[c[x]][c[y]])))

);

16 end);

20

Chapter 3

Computing the Simple Circuits of a

Directed Graph

Simple circuits of the precedence digraph play an important role in our overall approach. Re-

call that a circuit is a path of vertices (v1, v2, v3, ...vk) with v1 = vk. In addition, we say

that a circuit is simple, or elementary, if v1, ..., vk−1 are distinct. A naive computation to find

all such simple circuits is typically computationally expensive. However, a variety of more

sophisticated algorithms exist to increase efficiency, such as those by Tiernan [9], Tarjan [10],

and Johnson [6]. Of these, Johnson's algorithm is best with time complexityO((v+e)(c+1))

and space complexityO(v+e), where v, e and c are the number of vertices, edges and circuits

in the digraph, respectively. We provide a brief description of Johnson's algorithm and give

an implementation for inclusion in the GAP Digraphs package.

3.1 Johnson's algorithm

In Johnson's algorithms we iterate over a set of root vertices, at each stage computing a col-

lection of simple circuits that contain the current root. Suppose V = {1, .., n}. The basic

process of this approach is to take a root r ∈ V and compute all simple circuits in the sub-

21

graph induced by Vr = {r, r + 1, ..., n} that contain r. Recall that an induced subgraph is

the graph consisting of vertex set Vr and edge set Er = {(i, j) ∈ E|i, j ∈ Vr}. Naturally,

we begin with r = 1 and increment by one.

The process of finding simple circuits in Johnson's algorithm is a sophisticated instance

of depth-first search. It uses a recursive structure, based on a function CIRCUIT. We build

simple circuits one at a time by use of a stack. Calling the function CIRCUIT appends a

possible vertex to the end of a stack, and deletes it on a return from this call. Due to the

recursive structure, this is not trivial, since prior to the return subsequent calls to CIRCUIT

will be made. This constructs a path in the stack, which will be stored if it is a circuit before

the deletion occurs. Strictly speaking, our implementation only mimics a stack, but the effect

is equivalent. For details, see the code at the end of the section.

The crucial feature of this algorithm is that circuits are constructed by use of a blocking

function. This constitutes the main improvement of Johnson's algorithm over the alterna-

tives [9] and [10]. A blocked vertex cannot be added to the stack by CIRCUIT, and a vertex is

blocked immediately upon being added to the stack. This mechanism allows us to construct

simple circuits in the following way. CIRCUIT is recursively applied until no accessible ver-

tices from the root remain unblocked, and then, if the path in the stack is a circuit we append

it to the output variable. In short, vertices are unblocked upon the finding a new circuit or

returning to the outer procedure and selecting a new root. There is an added level of sophis-

tication to increase efficiency, in that we store information of previously blocked vertices to

aid the unblocking process. This retains information from previous unsuccessful searches.

Essentially, this allows us to only unblock the minimum amount of required vertices. Con-

sequently, efficiency is increased, since blocked vertices simulate a decrease in instance size.

Next, we present an implementation of Johnson's algorithm in GAP for inclusion in the

22

Digraphs package. This provides the technical details to support the above description. The

author would like to thank W. Wilson for providing some minor alterations and debugging

assistance.

1 InstallMethod(DigraphAllSimpleCircuits,

2 "for a digraph",

3 [IsDigraph],

4 function(digraph)

5 local UNBLOCK, CIRCUIT, out, stack, endofstack, gr, scc, n, blocked

, B,

6 gr_comp, comp, s, loops, i;

7

8 if DigraphNrVertices(digraph) = 0 or DigraphNrEdges(digraph) = 0

then

9 return [];

10 fi;

11

12 UNBLOCK := function(u)

13 local w;

14 blocked[u] := false;

15 while not IsEmpty(B[u]) do

16 w := B[u][1];

17 Remove(B[u], 1);

18 if blocked[w] then

19 UNBLOCK(w);

20 fi;

21 od;

23

22 end;

23

24 CIRCUIT := function(v, component)

25 local f, buffer, dummy, w;

26

27 f := false;

28 endofstack := endofstack + 1;

29 stack[endofstack] := v;

30 blocked[v] := true;

31

32 for w in OutNeighboursOfVertex(component, v) do

33 if w = 1 then

34 buffer := stack{[1 .. endofstack]};

35 Add(out, DigraphVertexLabels(component){buffer});

36 f := true;

37 elif blocked[w] = false then

38 dummy := CIRCUIT(w, component);

39 if dummy then

40 f := true;

41 fi;

42 fi;

43 od;

44

45 if f then

46 UNBLOCK(v);

47 else

48 for w in OutNeighboursOfVertex(component, v) do

24

49 if not w in B[w] then

50 Add(B[w], v);

51 fi;

52 od;

53 fi;

54

55 endofstack := endofstack − 1;

56 return f;

57 end;

58

59 out := [];

60 stack := [];

61 endofstack := 0;

62

63 gr := DigraphRemoveLoops(ReducedDigraph(digraph));

64 if DigraphVertexLabels(digraph) <> DigraphVertices(digraph) then

65 SetDigraphVertexLabels(gr, Filtered(DigraphVertices(digraph),

66 x −> OutDegrees(digraph) <>

0));

67 fi;

68

69 # Strongly connected components of the reduced graph

70 scc := DigraphStronglyConnectedComponents(gr);

71

72 # B and blocked only need to be as long as the longest connected

component

73 n := Maximum(List(scc.comps, Length));

25

74 blocked := BlistList([1 .. n], []);

75 B := List([1 .. n], x −> []);

76

77 # Perform algorithm once per connected component of the whole

digraph

78 for gr_comp in scc.comps do

79 n := Length(gr_comp);

80 if n = 1 then

81 continue;

82 fi;

83 gr_comp := InducedSubdigraph(gr, gr_comp);

84 comp := gr_comp;

85 s := 1;

86 while s < n do

87 if s <> 1 then

88 comp := InducedSubdigraph(gr_comp, [s .. n]);

89 comp := InducedSubdigraph(comp,

90 DigraphStronglyConnectedComponent(

comp, 1));

91 fi;

92

93 if not IsEmptyDigraph(comp) then

94 for i in DigraphVertices(comp) do

95 blocked[i] := false;

96 B[i] := [];

97 od;

98 CIRCUIT(1, comp);

26

99 fi;

100 s := s + 1;

101 od;

102 od;

103 loops := List(DigraphLoops(digraph), x −> [x]);

104 return Concatenation(loops, out);

105 end);

27

Chapter 4

Spectral Theory for Tropical Matrices

The spectral radius of a matrix is equal to the supremum over the set of eigenvalues. Our

first objective is to discuss the spectral radius for tropical, or max-plus, matrices and present a

method for its efficient computation (see [4], [7]). Thematically, our approach draws on the

max-plus precedence digraph (see chapter 2). Secondly, we consider a method for computing

the eigenvector corresponding to the eigenvalue corresponding to spectral radius. Finally, we

draw on the developed methodology to consider normalising max-plus matrix semigroups

that satisfy a condition based on the spectral radius. This process is instrumental in chapter

5.

4.1 The spectral radius

First, we recall the formal definition of the spectral radius. Let A ∈ Rn×n
max . Then, the spectral

radius of A, denoted ρ(A), is

ρ(A) = sup{r ∈ Rmax| ∃u ∈ Rn
max \ {0} : Au = ru}, (4.1)

where 0 denotes the zero vector with respect to the max-plus algebra. A straightforward ap-

proach to calculating this value is non-trivial, and computationally expensive in high dimen-

28

sions. Thus, we adopt an approach based on the precedence graph as described in [4] and [7].

Recall from chapter 3 that a circuit is a path of vertices (v1, v2, v3, ...vk) with v1 = vk. For

A ∈ Rn×n
max , we denote the cycle mean bymA(c). For some circuit c = (v1, v2, v3, ...vk = v1)

in P(A) with edges ce = {(v1, v2), ..., (vk−1, vk), (vk, v1)}, this is defined to be

mA(c) =

 ⊗
(i,j)∈ce

Aij

 1
k

, (4.2)

recalling that Aij the weight of the edge (i, j). Furthermore, note that conventional division

by k is equivalent to raising to the power of (1
k
) with respect to⊗. Hence, 4.2 is analogous to

the usual concept of an arithmetic mean, since ⊗ translates as addition, and then we divide

in the traditional sense. Thus, expressing the above with respect to the standard operations

we get  ⊗
(i,j)∈ce

Aij

 1
k

=
∑

(i,j)∈ce

Aij

k
. (4.3)

Next, for the purposes of computing the spectral radius, we introduce the maximum cycle

mean of P(A). DenotedM(A), this is naturally defined as

M(A) = max
c∈C(A)

mA(c), (4.4)

where C(A) denotes the set of all possible circuits in P(A). The following lemma cited in

[4] establishes an equivalence between the maximum cycle mean and the spectral radius. For

brevity we must omit the proof, which can be found in [5].

Lemma 4.1.1. Let A ∈ Rn×n
max for n ∈ N. Then

ρ(A) = M(A).

It is immediate from lemma 4.1.1 that the problem of computing the spectral radius is

reduced to computing the maximum cycle mean ofP(A). To do this, we derive an alternative

29

form that is readily computable. We have the following proposition based on [7], noting that

for a matrix A ∈ Rn×n
max , the trace of A, denoted trace(A), is

trace(A) =
n⊕

i=1

Aii = max
1≤i≤n}

Aii.

Proposition 4.1.2. Let A ∈ Rn×n
max for n ∈ N. Then,

M(A) = max
1≤k≤n

trace(Ak)
1
k =

⊕
1≤k≤n

trace(Ak)
1
k .

Proof. By definition M(A) = max
c∈C(A)

mA(c). We can simplify this further using a standard

result analogous to that used in chapter 1. In particular, for k ∈ N, (Ak)ij is the maximum

over the sum of the labels of the length k directed paths from vertex j to i in P(A). It follows

that

M(A) = max
c∈C(A)

mA(c)

= max
k∈N

(
1

k
max
1≤i≤n

(Ak)ii

)
= max

k∈N

n⊕
i=1

(Ak)ii
k

= max
k∈N

trace(Ak)

k

= max
k∈N

trace(Ak)
1
k

=
⊕

1≤k≤n

trace(Ak)
1
k ,

recalling that division by k correspond to raising to the 1
k
power with respect to⊗. From [7],

it suffices to consider simple circuits. HenceM(A) = max
1≤k≤n

trace(Ak)
1
k , as required.

To conclude, we present the following GAP code based on proposition 4.1.2 and lemma

4.1.1, which computes the spectral radius of a max-plus matrix.

30

1 InstallMethod(SpectralRadius, "for a max−plus matrix",

2 [IsMaxPlusMatrix],

3 function(mat)

4 local dim, cm, mk, k, max;

5

6 # Check for −infinity case

7 if DigraphAllSimpleCircuits(UnweightedPrecedenceDigraph(mat)) = []

then

8 return −infinity;

9 fi;

10

11 # Calculate the maximum cycle mean

12 dim := Length(AsList(mat)[1]);

13 cm := [];

14 mk := mat;

15 for k in [1 .. dim] do

16 max := Maximum(List([1 .. dim], x −> mk[x][x]));

17 if max <> −infinity then

18 Add(cm, max/k);

19 else

20 Add(cm, max);

21 fi;

22 mk := mk * mat;

23 od;

24

25 return Maximum(cm);

26 end);

31

4.2 Radial eigenvectors

Of particular interest is an eigenvector corresponding to the spectral radius of a max-plus ma-

trix. It is clear that there exist only finitely many simple circuits in a digraph with a finite

vertex set. Hence, such an eigenvector exists, since the value of the supremum in the defi-

nition of the spectral radius is realised by some eigenvalue. Consequently, despite using the

supremum operator for consistency with the literature, for our purposes it could be replaced

with the maximum operator. Formally, we wish to find the eigenvector u ∈ Rn
max \ {0}

realising the supremum (or maximum) given by

ρ(A) = sup{r ∈ Rmax| ∃u ∈ Rn
max \ {0} : Au = ru}. (4.5)

Naturally, we refer to this as a radial eigenvector. In regards to the order problem, we require

a method for computing a radial eigenvector in the case that the spectral radius is zero. How-

ever, we first develop the theory in the slightly more general setting for non-positive spectral

radii, mirroring [5]. Our case of interest then immediately follows.

Preceding the main result of this section, we require several definitions. Recall from the

previous section that the spectral radius corresponds to the maximum cycle mean. A cycle

which realises this maximum is known as a critical cycle, and is said to contain critical vertices.

For a max-plus matrix A and a cycle c in P(A), these are denoted V c(A). Furthermore, for

A ∈ Rn×n
max and λ ∈ R, define the max-plus matrix Aλ by

(Aλ)ij = Aij − λ. (4.6)

32

Next, we define A+ as
∞⊕
k=1

Ak, (4.7)

and the related matrix A∗ as

A∗ = I ⊕ A+ =
∞⊕
k=0

Ak, (4.8)

where I denotes the n × n max-plus identity matrix. Note that 4.8 holds since A0 = I .

Finally, for a vertex v of P(A), we denote the column of A corresponding to v as [A]v.

To support the our main result we require the following lemma. This establishes a re-

quired conditions for the simple computation of A+. In general, due to the infinite sum,

the computation may not terminate and be intractable, or may require a more sophisticated

analysis.

Lemma 4.2.1. Let A ∈ Rn×n
max . If ρ(A) ≤ 0, then A+ exists and is given by

A+ =
2n⊕
k=1

Ak. (4.9)

Proof. It follows immediately from the definition of A+ that

(A+)ji ≥ max{(Ak)ji : 1 ≤ k ≤ 2n} (4.10)

It remains to show that (A+)ji ≤ max{(Ak)ji : 1 ≤ k ≤ 2n}. A path p of length k > n in

P(A) from i to j must visit at least one vertex multiple times. Hence, such a path contains

at least one simple circuit and a path p′ of length at most n from i to j. Since ρ(A) = 0, the

maximum weight of a circuit from i is 0. If the maximum weight corresponding to (A+)ji

occurs on p′ then we are done, since p is a path of length less than n. Assume it occurs on

some simple circuit c. The path constructed by appending c to p′ has length at most 2n. This

33

yields (A+)ji ≤ max{(Ak)ji : 1 ≤ k ≤ 2n}, as required.

These definitions prepare us for a key result from [5], which forms the basis of an algorithm

for the efficient computation of a radial eigenvector. The proof is technical and requires further

auxiliary results, forcing its omission. See [5] for details.

Proposition 4.2.2. Let A ∈ Rn×n
max . Suppose c ∈ C is a circuit in P(A) of cycle mean ρ(A).

Then, for any v ∈ V c(A), the column [A∗
ρ(A)]v is an eigenvector corresponding to the eigenvalue

ρ(A).

In the context of the order problem, we require a method to compute a radial eigenvector

for a max-plus matrix A satisfying ρ(A) = 0 (see chapter 5). To conclude, we present the

following GAP code that achieves this through the use of lemma 4.2.1 and proposition 4.2.2.

1 InstallMethod(RadialEigenvector,

2 "for a max−plus matrix",

3 [IsMaxPlusMatrix],

4

5 function(m)

6 local dim, i, j, k, mplus, mstar, diag, crit;

7 dim := Length(AsList(m)[1]);

8

9 # Method valid for SpectralRadius(m) = 0

10 if SpectralRadius(m) <> 0 then

11 TryNextMethod();

12 fi;

13

14 mplus := List([1..dim], i −> List([1..dim], j −>

15 Maximum(List([1 .. 2*dim], k −> AsList(m^k)[i][j]))));

34

16

17 mstar := mplus;

18 for i in [1..dim] do

19 mstar[i][i] := Maximum(mstar[i][i], 0);

20 od;

21

22 crit := false;

23 k := 1;

24 while crit = false do

25 diag := List([1..dim], i −> AsList(m^k)[i][i]);

26 if 0 in diag then

27 crit := Position(diag, 0);

28 fi;

29 k := k + 1;

30 od;

31 return List([1..dim], i −> AsList(mstar)[i][crit])

32 end);

4.3 Normalisation

In this section we consider a normalisation applicable for certain max-plus matrix semigroups

that satisfy a property related to the spectral radius. To begin, we establish the norm of interest

in the following lemma.

35

Lemma 4.3.1. Let A ∈ Rn×n
max . The function ∥·∥ defined by

∥A∥ =
⊕
i,j

Aij = sup
i,j

Aij (4.11)

is a norm on Rn×n
max .

Proof. Suppose that ∥A∥ = 0 Then sup
i,j

Aij = 0, from which it immediately follows that

A = Z, the max-plus zero vector, as required. Secondly, observe that for λ ∈ Rmax we have

∥λ⊗ A∥ = sup
i,j

λ⊗ Aij

= sup
i,j

λ+ Aij

= λ+ sup
i,j

Aij

= λ⊗ sup
i,j

Aij

= λ⊗ ∥A∥ .

(4.12)

Finally, consider

∥A⊕B∥ = sup
i,j

Aij ⊕ sup
i,j

Bij

= sup
i,j

max{Aij, Bij}

≤ max{sup
i,j

Aij, sup
i,j

Bij}

= sup
i,j

Aij ⊕ sup
i,j

Bij

= ∥A∥ ⊕ ∥B∥ ,

(4.13)

as required.

Next, let Ai ∈ Rn×n
max for i ∈ {1, , ..., n} and S = ⟨A1, A2, ..., Ak⟩. Furthermore, define

M =
n⊕

i=1

Ai. In the case that ρ(M) = 0, we say that S is normalised if and only if

sup{∥A∥ |A ∈ S} = 0. (4.14)

36

This naturally leads to the definition of R−
max = {x ∈ Rmax|x ≤ 0} and the corresponding

set of matrices (R−
max)

n×n. Clearly, if S is normalised then S ⊆ (R−
max)

n×n. The following

proposition proves such a normalisation can be achieved, and suggests an algorithm for the

procedure by utilising the radial eigenvector introduced in section 4.2.

Proposition 4.3.2. Let S = S = ⟨A1, A2, ..., Ak⟩ andM =
n⊕

i=1

Ai. If ρ(M) = 0, then there

exists a diagonal matrix D such that DSD−1 is normalised.

Proof. Observe that ρ(M) = 0 implies that 0 is an eigenvalue of M . Thus, the equation

Mu = 0 ⊗ u = u has a solution u ∈ Rn
max, which is the radial eigenvector. Consider the

diagonal matrix D(u). By direct calculation we have

∥∥D−1MD
∥∥ =

⊕
i,j

(D−1MD)ij

=
⊕
i

⊕
j

(D−1MD)ij

=
⊕
i

⊕
j

u−1
i Mijuj

=
⊕
i

u−1
i ui

=
⊕
i

−ui ⊗ ui

=
⊕
i

−ui + ui

= 0.

(4.15)

It follows that, for each generator Ai of S, the following inequality holds

∥∥D−1AiD
∥∥ ≤

∥∥D−1MD
∥∥ = 0, (4.16)

since ∥Ai∥ ≤ ∥M∥. Hence

S ′ = D−1SD = ⟨D−1A1D, ..., D−1AkD⟩ ⊆ (R−
max)

n×n. (4.17)

37

It remains to show that there exists a matrix A ∈ D−1SD that satisfies ∥A∥ = 0. Since

ρ(M) = 0, there exists a k, i such that (Mk)ii = 0 by proposition 4.1.2. Hence (
⊕
j

Aj)
k
ii =

0. In particular, there exists a j such that (Ak
j)ii = 0, noting that Ak

j ∈ S. We show that

(D−1Ak
jD)ii = 0. Observe that

(Ak
jD)ii ≥ 0⊗ ui = 0 + ui = ui, (4.18)

and so

(D−1Ak
jD)ii ≥ −ui ⊗ ui = −ui + ui = 0. (4.19)

Thus, since S ′ ⊆ (R−
max)

n×n by 4.17, we have that (D−1Ak
jD)ii = 0, as required. In

particular, it follows that

0 ≤
∥∥D−1Ak

jD
∥∥ ≤ 0. (4.20)

Hence
∥∥D−1Ak

jD
∥∥ = 0 and thus S ′ is normalised, which completes the proof.

To conclude, we present an implementation in GAP of the algorithm implied by the proof

of proposition 4.3.2.

1 InstallMethod(NormalizeSemigroup,

2 "for a finitely generated semigroup of max−plus matrices",

3 [IsMaxPlusMatrixSemigroup],

4

5 function(S)

6 local gens, dim, m, i, j, k, diag, critcol, d, ngens;

7 gens := GeneratorsOfSemigroup(S);

8 dim := Length(gens[1][1]);

9

10 # Sum with respect to max−plus algebra of generators of S

38

11 m := Matrix(IsMaxPlusMatrix, List([1..dim], i −> List([1..dim], j

−>

12 Maximum(List([1..Length(gens)], k −> gens[k][i][j])))));

13

14 critcol := RadialEigenvector(m);

15 d := List([1..dim], i −> List([1..dim], j −> −infinity));

16 for i in [1..dim] do

17 d[i][i] := critcol[i];

18 od;

19 d := Matrix(IsMaxPlusMatrix, d);

20

21 ngens := List(gens, g −> InverseOp(d)*g*d);

22 return Semigroup(ngens);

23 end);

39

Chapter 5

The Order Problem for Tropical Matrix

Semigroups

A positive solution to the order problem for max-plus matrix semigroups is given in [4]. We

review [4] and utilise methods from the preceding chapters to produce an effective implemen-

tation in GAP that decides the order problem.

To begin, let us recall the formal statement of the problem. Let S = ⟨A1, A2, ..., Ak⟩ for

Ai ∈ Rn×n
max and i = 1, ..., k. The order problem asks if it can be determined in finite time

whether S is finite. Observe that the order problem is clearly semi-decidable1, since an enu-

meration of the elements terminates if S is finite. However, this method fails for the infinite

case. Hence, the essence of the problem lies in the detection of infinite cardinality.

To begin, we state the main theorem established in [4], which builds on the work of

Simon [11] and constitutes an affirmative answer to the Burnside problem2 for max-plus

matrix semigroups. The proof is involved and forms a substantial portion of [4], to which we

direct the reader for brevity.
1Recall that a decision problem is semi-decidable if there exists an algorithm that answers positively in finite

time.
2For the definition of the Burnside problem and torsion semigroups see chapter 0.

40

Theorem 5.0.3. Let S ⊆ Rn×n
max be finitely generated. If S is torsion then S is finite.

Theorem 5.0.3 immediately reduces the order problem to the torsion problem, which asks

whether it is possible to determine in finite time whether a finitely generated semigroup of

max-plus matrices is torsion.

5.1 The torsion problem

The reduction of the order problem to the torsion problem motivates this section. First, we

present a positive solution from [4] to the torsion problem for max-plus matrix semigroups. In

addition, we present an implementation in GAP that effectively decides the torsion problem

for such semigroups.

Theorem 5.1.1. Let S be a finitely generated semigroup of max-plus matrices, the torsion problem

for S is decidable.

In order to establish 5.1.1, we require a number of auxiliary results. First, consider the

following theorem which translates a classical cyclicity result into the max-plus context. Nu-

merous proofs exist, for example see [7] or [12].

Theorem 5.1.2. Let A ∈ Rn×n
max be irreducible. Then there exists N, c ≥ 1 such that for all

n ≥ N w have

An+c = ρ(A)cAn. (5.1)

Theorem 5.1.2 has the following corollary [4], that provides an effective criterion for de-

termining if a max-plus matrix is torsion.

Corollary 5.1.3. Let A ∈ Rn×n
max . Then the following are equivalent:

1. A is torsion,

2. for each irreducible block B of A, ρ(B) ∈ {−∞, 0}.

41

Proof. We prove the case whereA consists of a single irreducible block, that is, A is irreducible.

It is technical, but simple, to extend to the case where A is reducible, see [4]. Assume that A

is torsion, then there exist p, q such that Ap = Aq and

Ar+k(q−p) = Ar, (5.2)

for all r ≥ p and k ∈ N. In addition, by theorem 5.1.2 it follows that there exists c,N ∈ N

such that

An+c = ρ(A)cAn, (5.3)

for n ≥ N . For all t ∈ N, we prove that AN+tc = ρ(A)tcAN by induction on t. The base

case is immediate. Assume the result holds for t ≤ k. For t+ 1 we have

AN+(t+1)c = A(N+tc)+c

= ρ(A)cAN+tc

= ρ(A)cρ(A)tcAN

= ρ(A)(t+1)cAN .

(5.4)

Thus, by induction,AN+tc = ρ(A)tcAN for all t ∈ N. In particular, we have thatAN+(q−p)c =

ρ(A)(q−p)cAN . By 5.2, we deduce that AN+(q−p)c = AN . Combining these results implies

AN = ρ(A)(q−p)cAN (5.5)

In order to reach a contradiction, assume ρ(A) /∈ {0,−∞}, then ρ(A) = k ∈ R \ {0}.

From 5.5 we deduce that (AN)11 = k + (AN)11, a contradiction. Hence ρ(A) ∈ {0,−∞},

since ρ(A) exists and is an element of Rmax.

Conversely, suppose that ρ(A) ∈ {0,−∞}. We wish to show that A is torsion. First,

consider the case where ρ(A) = 0. Observe that ρ(A)t = ρ(A) for all t ∈ N. Hence,

42

theorem 5.1.2 implies there exists an c,N ∈ N such that

An+c = ρ(A)cAn = ρ(A)An = 0⊗ An = An, (5.6)

for n ≥ N . Taking n = N , it immediately follows that A is torsion. Secondly, consider the

case where ρ(A) = −∞. Theorem 5.1.2 implies

(An+c)ij = (ρ(A)cAn)ij = −∞⊗ An
ij = −∞, (5.7)

for all i, j and n ≥ N . In particular, AN = AN+k for all k ∈ N. Hence A is torsion, as

required.

Further theory is required to produce an analogous result for determining if an max-plus

matrix semigroup is torsion, as opposed to a singlematrix. Henceforth, letS = ⟨A1, A2, ..., Ak⟩

forAi ∈ Rn×n
max and defineM =

k⊕
i=1

µ(Ai). Our first proposition requires the following tech-

nical lemma.

Lemma 5.1.4. Let A ∈ Rn×n
max and k ≥ 1. Then

ρ(Ak) = ρ(A)k. (5.8)

Proof. Observe that that by proposition 4.1.2 we have

ρ(Ak) = max
1≤j≤n

trace((Aj)k)
1
j

= max
j∈N

trace((Aj)k)
1
j

≤ max
j∈N

trace(Aj)
k
j

= ρ(A)k.

(5.9)

In addition, suppose that u is an eigenvalue of A, and so Au = ru by definition. It follows

that Aku = rk. Hence ρ(A)k is an eigenvalue of Ak. In particular, ρ(A)k ≤ ρ(Ak), since

43

ρ(Ak) is the supremum over all such eigenvalues. Combining these results, we deduce that

ρ(Ak) = ρ(A)k, as required.

Next, we prove a proposition that yields important insight on the constructed matrix

M =
k⊕

i=1

µ(Ai). This relies on the introduction standard alternative notation for expressing

the semigroup S. In particular, let Σ = {a1, ..., ak} and µ : Σ+ → Rn×n
max be a morphism

such that µ(ai) = Ai and S = µ(Σ+). Note that we denote by Σ+ the set of finite words

over an arbitrary set Σ.

Proposition 5.1.5. ObserveM =
⊕
i

µ(ai). We have that

ρ(M) =
⊕
w∈Σ+

ρ(µ(w))
1

|w| , (5.10)

where |w| denotes the length of the word w ∈ Σ+.

Proof. First, observe µ(ai) ≤ M for all i. Hence we have that

⊕
w∈Σ+

ρ(µ(w))
1

|w| ≤
⊕
n∈N

ρ(Mn)
1
n = ρ(M), (5.11)

by an application of lemma 5.1.4. It remains to prove ρ(M) ≤
⊕

w∈Σ+

ρ(µ(w))
1

|w| . By defi-

nition, there exists a sequence i1, i2, ..., ik ∈ {1, ..., n} corresponding to the maximum cycle

mean equivalent to ρ(M). Thus,

ρ(M)k = Mi1i2 ⊗Mi2i3 ⊗ ...⊗Miki1 . (5.12)

By definition, observe that for all (i, j), we have that Mij corresponds to µ(as)ij for some

s. Choose sl ∈ {1, ..., n} such that Milil+1 = µ(asl)ilil+1. Then, for w = as1as2 ...ask , we

44

have
ρ(µ(w)) ≥ trace(w)

≥ µ(w)i1i1

≥ µ(as1)i1i2µ(as2)i2i3 ...µ(ask)iki1

= ρ(M)k.

(5.13)

It follows that

p(M) ≤ ρ(µ(w))
1
k = ρ(µ(w))

1
|w| ≤

⊕
w∈Σ+

ρ(µ(w))
1

|w| , (5.14)

as required.

Proposition 5.1.5 prepares us for the following theorem, which is instrumental. It provides

an efficient method for detecting for torsion semigroups, and thus infinite order, in the vast

majority of cases.

Theorem 5.1.6. If S is torsion then ρ(M) ∈ {−∞, 0}.

Proof. By proposition 5.1.5, we have

ρ(M) = ρ(µ(w))
1

|w| (5.15)

for some w ∈ Σ+. Since µ(w) ∈ S, it is torsion. Consequently, since µ(w) ∈ Rn×n
max ,

then µ(w) ∈ {−∞, 0} by corollary 5.1.3. Since 0
1

|w| = 0 and −∞
1

|w| = −∞, we have

ρ(M) ∈ {−∞, 0}, as required.

Notice that the utility of proposition 5.1.5 lied in showing ρ(M) is witnessed by some

µ(w) ∈ S. On the basis of theorem 5.1.6, we divide our attention into the two cases where

ρ(M) = −∞ and ρ(M) = 0 respectively. The following proposition addresses the former

case. Recall that a ∈ S is nilpotent if ∃n ∈ N such that an = Z, where Z denotes the zero

n× n max-plus matrix. Further, S is nilpotent if and only if there exists an n ∈ N such that

an = Z for all a ∈ S. Equivalently, we write Sn = {Z}.

45

Proposition 5.1.7. ρ(M) = −∞ if and only if S is nilpotent. In particular, if ρ(M) = −∞

then S is torsion.

Proof. First, observe that if S is nilpotent, then S is clearly torsion. Assume that ρ(M) =

−∞. By the equivalence of the spectral radius and the maximum cycle mean,M contains no

circuits. In addition, (Mn)ij = −∞ for all (i, j), since a path of length n in M is either a

complete circuit, or contains a circuit. Recall from the proof of 5.1.5 that µ(w) ≤ Mn for

all w ∈ Σ+ of length n. Hence (µ(w))ij = −∞ for all (i, j). Since w is an arbitrary word of

length n, this implies µ(w) = Z for all w of length n (recall that Z denotes the matrix such

that Zij = −∞ for all (i, j)). Thus, for all A ∈ S, we have that An = Z, since a word w

such that µ(w) = A satisfies µ(wn) = An where |wn| ≥ n.

For the converse, suppose that S is nilpotent. In order to reach a contradiction, as-

sume that M admits a circuit c = (i1i2...iki1) of length k. Repeated traversal of c yields

(Mmk)i1i1 ̸= −∞ for allm ∈ N, since if (Mmk)i1i1 = −∞ then no circuit of lengthmk ex-

ists from vertex i1. This implies S contains non-zero products of arbitrary length. Hence S is

not nilpotent, a contradiction. ThusM does not admit a circuit, which implies ρ(M) = −∞,

as required.

For the remaining case, since ρ(M) = 0, the normalisation described in section 4.3

applies. Let the normalised subgroup S ′ ⊆ (R−
max)

n×n be constructed from S according to

theorem 4.3.2. This is exploited in the following theorem.

Theorem 5.1.8. Suppose ρ(M) = 0, then S is torsion if and only if S ′ is torsion.

Proof. From theorem 4.3.2, recall that S ′ = D−1SD for a diagonal matrix D. First, assume

S is torsion and let A ∈ S ′ be arbitrary. By construction, A = D−1BD ∈ S ′ for some

B ∈ S. By assumption B is torsion, there exists p, q ∈ N such that Bp = Bq. It follows that

Ap = D−1BpD = D−1BqD = Aq, (5.16)

46

as required. For the converse, assume that S ′ is torsion and let A ∈ S be arbitrary. By

assumption, B = D−1AD ∈ S ′ is torsion. Thus, there exists p, q ∈ N such that Bp = Bq.

HenceD−1ApD = D−1AqD. By cancellation, this impliesAp = Aq and henceA is torsion,

as required.

Hence, we have reduced the torsion problem in the case that ρ(M) = 1 to subsemigroups

of (R−
max)

n×n. To proceed, we must define a map given in cited in [4] from [11]. Define the

function κ : R−
max → R−

max by

κ(x) =


0 if x = 0

−1 if −∞ ≤ x < 0

−∞ if x = −∞

, (5.17)

which we extend component-wise to (R−
max)

n×n. The following lemma highlights two key

properties of this function.

Lemma 5.1.9. The function κ : R−
max → R−

max satisfies

κ(a⊕ a) = κ(a)⊕ κ(a),

κ(a⊗ b) = κ(κ(a)⊗ κ(b)).

(5.18)

for all a, b ∈ R−
max.

Proof. By direct computation, observe

κ(a⊕ b) = κ(max{a, b}) =


κ(a) if a ≥ b

κ(b) if a < b

= max{κ(a), κ(b)} (5.19)

since a ≥ b implies κ(a) ≥ κ(b) and a < b implies κ(a) ≤ κ(b). It is then immediate from

47

the definition that κ(a⊕ b) = κ(a)⊕ κ(a), as required. Secondly, observe that

κ(a⊗ b) = κ(a+ b) =



0 if a = b = 0

−1 if a = 0 and −∞ ≤ b < 0

−1 if b = 0 and −∞ ≤ a < 0

−1 if −∞ ≤ a, b < 0

−∞ if a = −∞ or b = −∞

(5.20)

From this, direct computation in each case verifiesκ(a⊗b) = κ(κ(a)⊗κ(b)), as required.

It follows from lemma 5.1.9 that κ is a morphism into the three element semiring Rκ =

{0,−1,−∞} that is equipped with the operations a⊕κ b = a⊕ b and a⊗κ b = κ(a⊗ b).

The next lemma clarifies multiplication for matrices over the semiring Rκ.

Lemma 5.1.10. Let A,B ∈ R3. Then

A⊗κ B = κ(A⊗B) (5.21)

Proof. For a valid pair of indices (i, j), we have

(A⊗κ B)ij =
⊕

k∈{1,...,n}

Aik ⊗κ Bkj, (5.22)

since a⊕κ b = a⊕ b. We then have

⊕
k∈{1,...,n}

Aik ⊗κ Bkj =
⊕

k∈{1,...,n}

κ(Aik ⊗Bkj)

= κ

 ⊕
k∈{1,...,n}

Aik ⊗Bkj


= (κ(A⊗B))ij,

(5.23)

48

by noting that a ≥ b implies κ(a) ≥ κ(b) and a < b implies κ(a) ≤ κ(b). Hence

A⊗κ B = κ(A⊗B), (5.24)

as required.

We are now prepared to state and prove the main result of this section. In the following,

let ι : κ(R−
max)

n×n → (R−
max)

n×n denote the set inclusion map.

Proposition 5.1.11. Let A ∈ (R−
max)

n×n. The following are equivalent

1. A is torsion,

2. ι ◦ κ(A) is torsion,

3. for each non-zero irreducible block B of A, there exists a circuit of B composed only of arcs

of weight 1.

Proof.

(1 ⇐⇒ 3) First, assume A is torsion and let B be a non-zero irreducible block of A. By

corollary 5.1.1, we have that ρ(B) = {0,−∞}. However, if ρ(B) = −∞ then Bij = −∞

for all (i, j) since B irreducible implies P(B) is strongly connected. Hence ρ(B) = 0. Ob-

serve a circuit in B has weight 0 then the weight of each edge in that circuit must also have

weight 0, since Bij ≤ 0 for all (i, j) by hypothesis. Hence the result follows, since ρ(B) = 0

corresponds to a particular cycle mean in B.

Secondly, assume that for each irreducible block B of A, there exists a circuit of B com-

posed only of arcs of weight 0. Then ρ(B) ≥ 0. In addition, since Bij ≤ 0 for all (i, j),

it follows ρ(B) ≤ 0. Hence ρ(B) = 0 and A is torsion by corollary 5.1.1, since B was an

arbitary irreducible block of A.

(2 ⇐⇒ 3)This is immediate, since A can be replaced by ι ◦ κ(A) above.

49

Proposition 5.1.11 enables us to decide the torsion problem in this case, since the semi-

group κ(S) is finite. Thus, we can use proposition 5.1.11 to deduce S is torsion if and only

if ι(A) is torsion for all A ∈ κ(S). This is easily verified in finite time by the third condi-

tion above. Hence, by means of proposition 5.1.11 and results throughout, an algorithm for

deciding the torsion problem in all cases is immediate. Moreover, the existence of such an

algorithm constitutes a proof of theorem 5.1.1.

Input S = ⟨A1, A2, ..., Ak⟩ for Ai ∈ Rn×n
max .

Output B ∈ {TRUE, FALSE}.

Step 1 Compute M =
k⊕

i=1

µ(Ai).

Step 2 Compute ρ(M):

• If ρ(M) /∈ {−∞, 0} return FALSE,

• If ρ(M) = −∞ return TRUE.

Step 3 Construct the normalised semigroup S ′.

Step 4 Compute the finite semigroup κ(S).

Step 5 For each A ∈ ◦κ(S), if there exists a non zero irreducible block B of ι(A), such that

there does not exist a circuit of B composed only of arcs of weight 0, return FALSE.

Step 6 Return TRUE.

We conclude by presenting an implementation of this algorithm in GAP for inclusion in

the Semigroups package.

50

1 InstallMethod(IsTorsion,

2 "for a finitely generated max−plus matrix semigroup",

3 [IsMaxPlusMatrixSemigroup],

4

5 function(S)

6 local gens, dim, m, rad, s, kappa, g, sim, growth, e, f, x,

cycletest, zeroblock, t,

7 irrblocks, ib, circ;

8

9 gens := GeneratorsOfSemigroup(S);

10 dim := Length(gens[1][1]);

11 m := Matrix(IsMaxPlusMatrix, List([1..dim], i −> List([1..dim], j

−>

12 Maximum(List([1..Length(gens)], k −> gens[k][i][j])))));

13

14 # Case: SpectralRadius = −infinity

15 rad := SpectralRadius(m);

16 if rad = −infinity then

17 return true;

18 else if rad <> 0 then

19 return false;

20 fi;

21 fi;

22

23 # Case: SpectralRadius = 0

24 s := NormalizeSemigroup(S);

25 gens := GeneratorsOfSemigroup(s);

51

26

27 kappa := function(A)

28 local B, dim, i ,j;

29 dim := Length(A[1]);

30 B := List([1..dim], i −> List([1..dim], j −> 0));

31 for i in [1..dim] do

32 for j in [1..dim] do

33 if A[i][j] = 0 then

34 B[i][j] := 0;

35 else if −infinity < A[i][j] and A[i][j] < 0 then

36 B[i][j] := −1;

37 else

38 B[i][j] := −infinity;

39 fi;

40 fi;

41 od;

42 od;

43 return Matrix(IsMaxPlusMatrix, B);

44 end;

45

46 # Compute elements kappa(S) w.r.t multiplication kappa(a \otimes b)

47 g := List(gens, x −> kappa(x));

48 # Optimised for dim <= 3

49 sim := EmptyPlist(3^9);

50 sim{[1..Length(g)]} := g;

51 growth := true;

52 while growth do;

52

53 growth := false;

54 for e in sim do

55 for f in g do

56 x := kappa(e*f);

57 if not x in sim then

58 Add(sim, x);

59 growth := true;

60 fi;

61 od;

62 od;

63 od;

64

65 # ib is global variable

66 cycletest := function(c)

67 local i;

68 for i in [1..Length(c)] do

69 if i < Length(c) then

70 if ib[c[i]][c[i+1]] <> 0 then

71 return true;

72 fi;

73 else

74 if ib[c[i]][c[1]] <> 0 then

75 return true;

76 fi;

77 fi;

78 od;

79 return false;

53

80 end;

81

82 zeroblock := function(blk)

83 local i, j;

84 for i in [1..Length(blk[1])] do

85 for j in [1..Length(blk[1])] do

86 if blk[i][j] <> −infinity then

87 return false;

88 fi;

89 od;

90 od;

91 return true;

92 end;

93

94 for t in sim do

95 irrblocks := IrreducibleBlocks(t);

96 for ib in irrblocks do

97 if not zeroblock(ib) then

98 circ := DigraphAllSimpleCircuits(UnweightedPrecedenceDigraph(

ib));

99 if ForAll(circ, cycletest) then

100 return false;

101 fi;

102 fi;

103 od;

104 od;

105 return true;

54

106 end);

5.2 The order problem

Our overarching objective has been achieved. For completeness, we include the now trivial

method in GAP that decides the order problem for max-plus matrix semigroups. The fol-

lowing is justified by the reduction given in theorem 5.0.3. In the next chapter, we'll see the

effectiveness of this method with a number of tests.

1 InstallMethod(IsFinite,

2 "for a finitely generated max−plus matrix semigroup",

3 [IsMaxPlusMatrixSemigroup],

4

5 function(S)

6 return IsTorsion(S);

7 end);

55

Chapter 6

Summary and Testing

This project has culminated in an effective implementation in GAP that determines if a finitely

generated natural or tropical matrix semigroup is finite. For the former case, an algorithm

from [3] was utilised, which exploited a morphism to a finite semigroup of matrices over a

three element semiring. In chapter 5, we saw a parallel approach for the tropical case. More-

over, this case centred on a reduction to the torsion problem given in [4]. We relied heavily

on a method to compute the spectral radius of a max-plus matrix, by utilising the precedence

digraph. Importantly, the spectral radius highlighted a particular case where a normalisation

could be achieved via conjugation with a diagonal matrix. This, in turn, relied on theory

enabling the computation of the radial eigenvector from [5].

To conclude, we verify the effectiveness of our implementation of an IsFinite function

for max-plus matrices for a number of tests. These cover the four key cases, which arise de-

pending on the value of the spectral radius for the matrix M =
k⊕

i=1

µ(Ai). The code used to

run these tests can be found in the code archive that accompanies this thesis.

56

Example 6.0.1.

First, let

I =

 0 −3

−2 −10

 . (6.1)

For S = ⟨I⟩, we ha M = I . Our test yielded:

new method

gap> I := Matrix(IsMaxPlusMatrix,[[0,-3],[-2,-10]]);

gap> SpectralRadius(I);

0

gap> isfinite(Semigroup(I));

true

enumeration via existing method.

gap> IsFinite(Semigroup(I));

semigroups++: enumerate

limit = 18446744073709551615

found 2 elements, 1 rules, max word length 2, finished!

true

Note that this covers the case where S is finite and ρ(M) = 0. Next, we consider

I =


−∞ 1 −∞

−∞ −∞ −∞

−∞ 1 −∞

 , (6.2)

and the new semigroup S = ⟨I⟩. Similarly, M = I , and we have:

57

new method

gap> I := Matrix(IsMaxPlusMatrix, [[-infinity, 1, -infinity],

> [-infinity, -infinity, -infinity], [-infinity, 1, -infinity]]);

gap> SpectralRadius(I);

-infinity

gap> isfinite(Semigroup(I));

true

enumeration via existing method

gap> IsFinite(Semigroup(I));

semigroups++: enumerate

limit = 18446744073709551615

found 2 elements, 1 rules, max word length 2, finished!

true

Note that this covers the case where S is finite and ρ(M) = −∞. We now move on to the

infinite case. First, we consider

I =


1 −∞ 2

−2 4 −∞

1 0 3

 , (6.3)

and the new semigroup S = ⟨I⟩. Again, M = I , and we have:

new method

gap> I := Matrix(IsMaxPlusMatrix, [[1, -infinity, 2],

> [-2, 4, -infinity], [1, 0, 3]]);

gap> SpectralRadius(I);

4

gap> isfinite(Semigroup(I));

58

false

enumeration via existing method: appears not to terminate.

> 150000 elements found.

In this case, our algorithm claims S is infinite and ρ(M) = 4. This is supported by theory

and supported by our test, since an enumeration of S using existing methods yielded over 105

elements. Finally, we consider

I =


0 −∞ −1

0 −∞ −4

−∞ 0 −∞

 (6.4)

J =


−2 −2 0

0 −∞ −3

−5 0 −∞

 (6.5)

K =


−∞ −∞ −∞

0 0 −∞

−5 0 −∞

 (6.6)

and the semigroup S = ⟨I, J,K⟩. By direct computation, we have

M =


0 −2 0

0 0 −3

−5 0 −∞

 . (6.7)

Our test yielded the following:

new method

gap> I := Matrix(IsMaxPlusMatrix, [[0, -infinity, -1],[0, -infinity, -4],

> [-infinity, 0, -infinity]]);

59

gap> J := Matrix(IsMaxPlusMatrix, [[-2, -2, 0],[0, -infinity, -3],

> [-5, 0, -infinity]]);

gap> K := Matrix(IsMaxPlusMatrix, [[-infinity, -infinity,

> -infinity],[0, 0, -infinity],[-5, 0, -infinity]]);

gap> M := Matrix(IsMaxPlusMatrix, [[0, -2, 0],[0, 0, -3],

> [-5, 0, -infinity]]);

gap> SpectralRadius(M);

0

gap> isfinite(Semigroup(I,J,K));

false

enumeration via existing method: appears not to terminate.

> 150000 elements found.

This covers our final key case, where S is infinite and ρ(M) = 0. As before, evidence provided

by a simple enumeration supports the algorithms output.

The above constitutes only preliminary testing. Moving on, the author recommends large

scale testing be done that utilises an automated procedure for max-plus matrix semigroup

generation. This will provide further evidence for the validity of this implementation. In ad-

dition, further work should be done to optimise these implementations and improve runtime.

That said, runtime was almost instant for the above tests. Finally, it would be valuable to anal-

yse the complexity of this algorithm. This would provide insight on its utility as instance size

increases.

60

Bibliography

[1] The GAP Group. GAP -- Groups, Algorithms, and Programming, Version 4.8.3, 2016.

[2] J.D. Mitchell et al. Semigroups - GAP package, version 2.7.4, 2016. http://www.

gap-system.org/Packages/semigroups.html.

[3] I. Simon A. Mandel. On Finite Semigroups of Matrices. Theoretical Computer Science,

5:101--111, 1977.

[4] S. Gaubert. On the Burnside problem for Semigroups of Matrices over the (max, +)

Algebra. Semigroup Forum, 52:271--292, 1996.

[5] K.G. Farlow. Max-Plus Algebra. Master's thesis, Virginia Polytechnic Institute and State

University, United States, 2009.

[6] D.B. Johnson. Finding all the elementary circuits of a directed graph. SIAM J. Comput.,

4(1):77--84, 1975.

[7] G. J. Olsder J.P. Quadrat F. Baccelli, G. Cohen. Synchronisation and Linearity: An

Algebra for Discrete Event Systems. Wiley, 1992.

[8] J. De Beule, J. Jonušas, J. D. Mitchell, M. Torpey, and W. Wilson. Digraphs - GAP

package, Version 0.5, March 2016.

[9] J.C. Tiernan. An efficient search algorithm to find the elementary circuits of a graph.

Comm. ACM, 13:722--726, 1970.

61

[10] R. Tarjan. Enumeration of the elementary circuits of a directed graph. SIAM J. Comput.,

2:211--216, 1973.

[11] I. Simon. Limited subsets of the free monoid. Proc. of the 19th Annual Symposium on

Foundations of Computer Science, pages 143--150, 1978. IEEE.

[12] P. I. Dudnikov and S. N. Samborski. Endomorphisms of semimodules over semirings

with an idempotent operation. Mathematics of the USSR-Izvestiya, 38(1):91, 1992.

62

